# Problem
With plenty of free time on their hands (or rather, hooves), the cows on Farmer John's farm often pass the time by playing video games. One of their favorites is based on a popular human video game called Puyo Puyo; the cow version is of course called Mooyo Mooyo. The game of Mooyo Mooyo is played on a tall narrow grid N cells tall (1≤N≤100) and 10 cells wide. Here is an example with N=6: Each cell is either empty (indicated by a 0), or a haybale in one of nine different colors (indicated by characters 1..9). Gravity causes haybales to fall downward, so there is never a 0 cell below a haybale.
Two cells belong to the same connected region if they are directly adjacent either horizontally or vertically, and they have the same nonzero color. Any time a connected region exists with at least K cells, its haybales all disappear, turning into zeros. If multiple such connected regions exist at the same time, they all disappear simultaneously. Afterwards, gravity might cause haybales to fall downward to fill some of the resulting cells that became zeros. In the resulting configuration, there may again be connected regions of size at least K cells. If so, they also disappear (simultaneously, if there are multiple such regions), then gravity pulls the remaining cells downward, and the process repeats until no connected regions of size at least K exist. Given the state of a Mooyo Mooyo board, please output a final picture of the board after these operations have occurred. 입력The first line of input contains N and K (1≤K≤10N). The remaining N lines specify the initial state of the board. 출력Please output N lines, describing a picture of the final board state. |
# My Answer
n,k = map(int,input().split())
board=list()
for _ in range(n):
board.append(list(map(int,list(input()))))
dx,dy = [-1,1,0,0],[0,0,1,-1]
pos=list()
def dfs(b,x,y):
global pos,visited,board
if board[x][y]==b:
pos[-1].append((x,y))
visited[x][y]=True
for q in range(4):
xx,yy = x+dx[q],y+dy[q]
if xx<0 or xx>=n or yy<0 or yy>=10:
continue
if not visited[xx][yy]:
dfs(b,xx,yy)
else:
return
def process():
global pos,visited,board
pos=[]
visited=[[False]*10 for _ in range(n)]
for i in range(n):
for j in range(10):
if board[i][j]!=0 and not visited[i][j]:
visited[i][j]=True
pos.append([])
pos[-1].append((i,j))
for d in range(4):
ii,jj = i+dx[d],j+dy[d]
if ii<0 or ii>=n or jj<0 or jj>=10:
continue
if not visited[ii][jj]:
dfs(board[i][j],i+dx[d],j+dy[d])
max_len=0
for p in pos:
max_len = max(max_len,len(p))
if max_len <k:
for b in board:
for h in b:
print(h,end='')
print()
exit(0)
for p in pos:
if len(p)>=k:
for a,b in p:
board[a][b]=0
for _ in range(n):
for l in range(n-2,-1,-1):
for m in range(10):
if board[l][m]!=0 and board[l+1][m]==0:
board[l][m],board[l+1][m] = board[l+1][m],board[l][m]
while True:
process()
상하좌우 k개 연결되어 있으면 동시 삭제 - 0으로 바꿈 ( 위부터 )
0 위에 숫자 있을 수 없음 - 0위의 숫자들은 아래로 내리기 ( 아래부터 탐색 )
k개 연결된 그룹 없을 때까지 반복
# Solution
def new_array(N):
return [[False for i in range(10)] for _ in range(N)]
N, K= map(int,input().split())
M = [list(input()) for _ in range(N)]
ck = new_array(N)
ck2 = new_array(N)
dx,dy = [-1,1,0,0],[0,0,1,-1]
def dfs(x,y):
ck[x][y] = True
ret=1
for i in range(4):
xx,yy = x+dx[i],y+dy[i]
if xx<0 or xx>=N or yy<0 or yy>=10:
continue
if ck[xx][yy] or M[x][y] != M[xx][yy]:
continue
ret += dfs(xx,yy)
return ret
def dfs2(x,y,val):
ck2[x][y] = True
M[x][y]='0'
for i in range(4):
xx,yy = x+dx[i],y+dy[i]
if xx<0 or xx>=N or yy<0 or yy>=10:
continue
if ck2[xx][yy] or M[xx][yy] != val:
continue
dfs2(xx,yy,val)
def down():
for i in range(10):
tmp = []
for j in range(N):
if M[j][i]!='0':
tmp.append(M[j][i])
for j in range(N-len(tmp)):
M[j][i]='0'
for j in range(N-len(tmp),N):
M[j][i]= tmp[j-(N-len(tmp))]
while True:
exist = False
ck = new_array(N)
ck2 = new_array(N)
for i in range(N):
for j in range(10):
if M[i][j] == '0' or ck[i][j]:
continue
res = dfs(i,j)
if res >=K:
dfs2(i,j,M[i][j])
exist=True
if not exist:
break
down()
for i in M:
print(''.join(i))
dfs - k개 연결된 그룹 찾기
dfs2 - k개 연결된 그룹 지우기
down - 지운 부분 0보다 위에 있는 숫자 내리기 ( 세로로 )
0 인 것과 아닌 것 나눠서 저장하고 0인 것부터 위에서 부터 채운 후 남은 자리에 숫자 저장 순서대로 채운다
'Algorithm > 백준 알고리즘 풀이' 카테고리의 다른 글
[Baekjoon] 1932. 정수 삼각형 (DP) (0) | 2021.05.07 |
---|---|
[Baekjoon] 12100. 2048 (EASY) (0) | 2021.05.05 |
❗️[Baekjoon] 14620. 꽃길 (0) | 2021.05.05 |
[Baekjoon] 16956. 늑대와 양 (0) | 2021.05.04 |
[Baekjoon] 17413. 단어 뒤집기 2 (0) | 2021.05.04 |