소문난 명강의 : 김기현의 딥러닝 부트캠프 with 파이토치
기초부터 수식, 실습까지 담은 올인원 딥러닝 입문 교과서
목차
1장 개발 환경 구축하기
1.1 아나콘다 설치하기
1.2 VS Code 설치 및 환경 설정
1.3 마치며
2장 딥러닝 소개
2.1 딥러닝이란?
2.2 좋은 인공지능이란?
2.3 머신러닝 프로젝트 워크플로
2.4 수학 용어 설명
2.5 마치며
3장 파이토치 튜토리얼
3.1 왜 파이토치인가?
3.2 (실습) 파이토치 설치
3.3 텐서란?
3.4 (실습) 기본 연산
3.5 (실습) 텐서 형태 변환
3.6 (실습) 텐서 자르기 & 붙이기
3.7 (실습) 유용한 함수들
4장 선형 계층
4.1 행렬 곱
4.2 (실습) 행렬 곱
4.3 선형 계층
4.4 (실습) 선형 계층
4.5 (실습) GPU 사용하기
4.6 마치며
5장 손실 함수
5.1 평균 제곱 오차
5.2 (실습) MSE Loss
5.3 마치며
6장 경사하강법
6.1 미분이란?
6.2 편미분
6.3 경사하강법
6.4 학습률에 따른 성질
6.5 (실습) 경사하강법 구현
6.6 (실습) 파이토치 오토그래드 소개
6.7 마치며
7장 선형 회귀
7.1 선형 회귀란?
7.2 선형 회귀의 수식
7.3 (실습) 선형 회귀
7.4 마치며
8장 로지스틱 회귀
8.1 활성 함수
8.2 로지스틱 회귀란?
8.3 로지스틱 회귀의 손실함수
8.4 로지스틱 회귀의 수식
8.5 (실습) 로지스틱 회귀
8.6 마치며
9장 심층신경망 I
9.1 심층신경망
9.2 심층신경망의 학습
9.3 역전파 알고리즘의 수식
9.4 그래디언트 소실 문제
9.5 렐루
9.6 (실습) Deep Regression
9.7 마치며
10장 확률적 경사하강법
10.1 확률적 경사하강법이란?
10.2 SGD의 직관적 이해
10.3 미니배치 크기에 따른 SGD
10.4 (실습) SGD 적용하기
10.5 마치며
11장 최적화
11.1 하이퍼파라미터란?
11.2 팁 : 효율적인 연구/개발 진행 방법
11.3 적응형 학습률
11.4 적응형 학습률의 수식
11.5 (실습) 아담 옵티마이저 적용하기
11.6 마치며
12장 오버피팅을 방지하는 방법
12.1 모델 평가하기
12.2 오버피팅이란?
12.3 테스트셋 구성하기
12.4 (실습) 데이터 나누기
12.5 마치며
13장 심층신경망 II
13.1 이진 분류
13.2 평가 지표
13.3 (실습) Deep Binary Classification
13.4 심층신경망을 활용한 분류
13.5 소프트맥스 함수와 교차 엔트로피 손실 함수
13.6 다중 클래스 분류 결과 분석하기
13.7 (실습) Deep Classification
13.8 마치며
14장 정규화
14.1 정규화의 개요
14.2 가중치 감쇠
14.3 데이터 증강
14.4 드롭아웃
14.5 배치정규화
14.6 (실습) 정규화
14.7 마치며
15장 실무 환경에서의 프로젝트 연습
15.1 실무를 진행하듯 실습하기
15.2 워크플로 리뷰
15.3 실습 소개
15.4 (실습) 분류기 모델 구현하기
15.5 (실습) 데이터 로딩 구현하기
15.6 (실습) 트레이너 클래스 구현하기
15.7 (실습) train.py 구현하기
15.8 (실습) predict.ipynb 구현하기
15.9 마치며
16장 표현 학습
16.1 특징(feature)이란?
16.2 원 핫 인코딩
16.3 차원 축소
16.4 오토인코더
16.5 마치며
17장 확률론적 관점
17.1 들어가며
17.2 기본 확률 통계
17.3 MLE(Maximum Likelihood Estimation)
17.4 신경망과 MLE
17.5 수식: MLE
17.6 MSE 손실 함수와 MLE
18장 CNN(합성곱신경망)
18.1 전통적인 방식
18.2 합성곱 연산
18.3 패턴 추출의 원리
18.4 맥스 풀링과 스트라이드 기법
18.5 합성곱신경망 설계 예제
18.6 (실습) CNN으로 MNIST 분류 구현하기
18.7 마치며
19장 RNN(순환신경망)
19.1 순환신경망 소개
19.2 RNN 한 걸음씩 들여다보기
19.3 순환신경망 활용 사례
19.4 LSTM
19.5 그래디언트 클리핑
19.6 (실습) LSTM으로 MNIST 분류 구현하기
19.7 마치며
REVIEW
이 책은 딥러닝 소개, 파이토치 실습부터 선형계층, 손실함수, 경사하강법, 선형 회귀 등의 딥러닝에서의 필수적인 이론들과 CNN, RNN 실습까지 딥러닝의 기본적인 내용들을 모두 담고 있다. 각 단원들은 내용이 길지 않고 글씨보다 그림과 실습이 많아서 더 쉽고 편하게 학습할 수 있었고 지루하지 않게 끝까지 학습할 수 있었다. 실습 코드는 모두 깃헙으로 제공해 쉽게 참고할 수 있다. 각 장마다 내용이 많지 않지만 중요한 단어 중심으로 필수적인 내용을 담고 있어서 딥러닝에 관한 지식이 없는 사람들도 쉽게 이해할 수 있을 것 같다.
"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."
'Review' 카테고리의 다른 글
[도서 리뷰] 파이썬 라이브러리를 활용한 텍스트 분석 (0) | 2022.11.27 |
---|---|
[도서 리뷰] 데이터 스토리 (0) | 2022.10.26 |
[도서 리뷰] 그로킹 심층 강화학습 (0) | 2022.08.28 |
[도서 리뷰] 파이썬을 활용한 베이지안 통계 (0) | 2022.07.23 |
[도서 리뷰] 사례 분석으로 배우는 데이터 시각화 (0) | 2022.06.22 |